Architecture
Polyglot's architecture is built around a central principle: controlled memory management for AI research workflows. Every component is designed to preserve, enhance, and leverage conversational memory across different AI models and research sessions.
Core Architecture Philosophy
Memory-Centric Design
Traditional AI chat interfaces treat conversations as isolated sessions. Polyglot treats them as accumulated research memory that grows more valuable over time:
Persistent Context: Conversations maintain full context across browser sessions and model switches
Memory Evolution: Research insights accumulate and evolve through multiple interactions
Knowledge Integration: RAG documents and MCP tools become part of persistent memory
Cross-Model Continuity: Memory context transfers seamlessly between different AI models
Research-First Architecture
Every architectural decision prioritizes research workflows over generic chat functionality:
Comparative Studies: Architecture supports running identical prompts across multiple models with consistent context
Long-term Projects: System design accommodates research spanning weeks or months with growing knowledge bases
Knowledge Synthesis: Built-in support for integrating external documents and tools into AI conversations
Privacy Control: Research data remains local-first with optional synchronization
System Architecture Layers
┌─────────────────────────────────────────────────────────────┐
│ Research Interface Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ Conversation │ │ Comparative │ │ Knowledge │ │
│ │ Management │ │ Analysis │ │ Integration │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Memory Management Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ Memory Context │ │ Research State │ │ Cross-Model │ │
│ │ Preservation │ │ Tracking │ │ Context │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Knowledge Integration Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ RAG Document │ │ MCP Tool │ │ Semantic │ │
│ │ Processing │ │ Integration │ │ Search │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ AI Provider Integration │
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ Multi-Provider │ │ Context Transfer│ │ Performance │ │
│ │ API Layer │ │ & Adaptation │ │ Monitoring │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Storage & Persistence │
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────┐ │
│ │ Local Storage │ │ Memory Context │ │ Optional │ │
│ │ (IndexedDB) │ │ Management │ │ Sync │ │
│ └─────────────────┘ └─────────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
Key Architectural Components
Memory Management System
Purpose: Preserve and transfer conversation context across models and sessions
Components:
Context Snapshots: Full conversation state with memory markers and research insights
Memory Markers: Extracted insights, decisions, and research findings that persist
Cross-Model Translation: Adapting memory context for different AI model capabilities
Research State Tracking: Long-term project context and hypothesis evolution
Research Benefits:
Switch from GPT-4 to Claude mid-conversation without losing context
Build on previous research sessions with accumulated knowledge
Track insight evolution over weeks or months of research
Compare model performance with identical memory context
Knowledge Integration Framework
Purpose: Integrate external documents and tools into AI conversations
Components:
RAG Processing: Document chunking, embedding, and semantic search
MCP Integration: Tool access and external data source connections
Context Weaving: Intelligent integration of knowledge into conversation flow
Citation Tracking: Maintain provenance of information sources
Research Benefits:
Ground AI responses in your specific research documents and data
Access real-time information through connected tools and APIs
Maintain citation trails for research reproducibility
Build comprehensive knowledge bases that enhance AI capabilities
Multi-Model Research Platform
Purpose: Enable seamless switching between AI models for comparative research
Components:
Provider Abstraction: Unified interface for OpenAI, Anthropic, Google, and local models
Context Adaptation: Intelligent context transfer between different model architectures
Performance Monitoring: Consistent metrics across all AI providers
Comparative Analytics: Side-by-side analysis of model responses
Research Benefits:
Run identical experiments across multiple AI models
Identify model-specific strengths and biases in controlled conditions
Build model-agnostic research workflows
Generate comparative analyses with consistent methodology
Local-First Storage Architecture
Purpose: Maintain complete data control while enabling optional collaboration
Components:
IndexedDB Persistence: Browser-based storage for all research data
Encryption Layer: Client-side encryption for sensitive research content
Sync Protocol: Optional server synchronization with privacy controls
Conflict Resolution: Intelligent merging of research data across devices
Research Benefits:
Complete ownership of research data and conversations
Offline-capable research environment
Optional collaboration while maintaining privacy control
Multi-device access to research projects
Research Workflow Architecture
Comparative Study Workflow
Research Question
↓
┌─────────────────┐
│ Baseline Setup │ ← Identical context and prompts
└─────────────────┘
↓
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Model A Test │ │ Model B Test │ │ Model C Test │
│ (with memory │ │ (with memory │ │ (with memory │
│ context) │ │ context) │ │ context) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
↓ ↓ ↓
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Response A + │ │ Response B + │ │ Response C + │
│ Updated Memory │ │ Updated Memory │ │ Updated Memory │
└─────────────────┘ └─────────────────┘ └─────────────────┘
↓ ↓ ↓
└───────────────────────┼───────────────────────┘
↓
┌─────────────────────────┐
│ Comparative Analysis │
│ + Memory Integration │
│ + Research Synthesis │
└─────────────────────────┘
Long-Term Research Workflow
Project Initiation
↓
┌─────────────────┐
│ Knowledge Base │ ← RAG documents, MCP tools
│ Integration │
└─────────────────┘
↓
┌─────────────────┐
│ Session 1: │ ← Initial conversations with memory markers
│ Foundation │
└─────────────────┘
↓
┌─────────────────┐
│ Session 2: │ ← Builds on Session 1 memory + new insights
│ Development │
└─────────────────┘
↓
┌─────────────────┐
│ Session N: │ ← Accumulated memory + evolved understanding
│ Synthesis │
└─────────────────┘
↓
┌─────────────────┐
│ Research │ ← Export findings with full provenance
│ Export │
└─────────────────┘
Data Flow Architecture
Memory Context Flow
User Input → Context Assembly → Model Processing → Response + Memory Update
↑ ↓ ↓ ↓
└──────── Memory Markers ←── Response Analysis ←── Context Integration
↓
Research State Update
↓
Cross-Session Persistence
Context Assembly Process:
Current Conversation: Recent message history and immediate context
Memory Markers: Persistent insights and research findings from previous sessions
Knowledge Base: Relevant RAG documents and MCP tool results
Research Context: Project goals, methodology, and accumulated understanding
Model History: Previous model interactions and comparative context
Knowledge Integration Flow
External Knowledge → Processing → Integration → Context Enhancement
↓ ↓ ↓ ↓
RAG Documents Chunking + Semantic Enhanced AI
MCP Tools Embedding Search Responses
External APIs Indexing Ranking Research Context
Integration Process:
Document Processing: Semantic chunking and embedding generation
Tool Integration: MCP server connections and capability mapping
Context Weaving: Intelligent integration into conversation flow
Citation Management: Maintaining provenance and research integrity
Performance and Scalability
Memory Management Performance
Optimization Strategies:
Context Caching: Pre-loaded memory contexts for instant model switching
Semantic Indexing: Fast retrieval of relevant memory markers and knowledge
Incremental Updates: Efficient memory marker updates without full context reload
Compression: Lossless compression of conversation data with integrity preservation
Scalability Targets:
Context Retrieval: Sub-100ms for any conversation or memory marker
Model Switching: Sub-second model changes with full context preservation
Knowledge Search: Real-time semantic search across large document collections
Research Projects: Support for projects spanning months with gigabytes of data
Storage Architecture Scaling
Local Storage Management:
Intelligent Archiving: Automatic compression of older conversations with research preservation
Priority-Based Retention: Critical research data preserved, temporary data cleaned
Memory Optimization: Efficient storage patterns for long-term research projects
Backup Integration: Seamless export/import for data migration and backup
Optional Cloud Scaling:
Selective Sync: Granular control over what data synchronizes across devices
Privacy-Preserving Sync: End-to-end encryption with zero-knowledge architecture
Collaborative Research: Multi-researcher coordination with individual privacy preservation
Infrastructure Agnostic: Deploy sync server on any infrastructure
Security and Privacy Architecture
Local-First Security Model
Data Sovereignty:
Local Processing: All sensitive operations happen on user devices
Optional Sync: Cloud synchronization is opt-in with granular controls
Encryption: End-to-end encryption for any data that leaves the device
Zero-Knowledge: Sync servers cannot access conversation content or research data
Research Data Protection:
Compartmentalization: Research projects can be isolated for sensitive work
Access Controls: Fine-grained permissions for collaborative research
Audit Trails: Complete logging of data access and modifications
Data Retention: User-controlled retention policies for research compliance
Privacy-Preserving Collaboration
Multi-Researcher Support:
Individual Privacy: Personal conversations remain private in collaborative projects
Shared Insights: Aggregated research findings can be shared while preserving individual data
Anonymization: Contribution tracking with identity protection
Selective Sharing: Granular control over what research components are shared
This architecture enables Polyglot to function as a comprehensive AI research environment while maintaining the simplicity and performance of local-first design.
Last updated