CRDT
Polyglot uses specialized CRDTs designed for AI research workflows to ensure research memory and conversation context remain consistent across devices and collaborators without conflicts.
Research-Specific CRDT Design
Memory Context CRDT
Traditional CRDTs are designed for generic collaborative editing. Polyglot's Memory Context CRDT is optimized for research workflow patterns:
Temporal Consistency: Research insights have chronological relationships that must be preserved
Causal Dependencies: Memory markers often build upon previous insights, requiring causal ordering
Research Integrity: Conflicts resolved with research continuity as the primary concern
Context Preservation: Memory context maintained across model switches and device synchronization
interface ResearchMemoryCRDT {
type: 'research-memory-context';
nodeId: string; // device or researcher identifier
// Core CRDT State
vectorClock: VectorClock;
causalGraph: CausalGraph;
// Research Memory Components
memoryMarkers: GSetCRDT<MemoryMarker>; // grow-only set of insights
conversationHistory: SequenceCRDT<Message>; // ordered conversation sequence
knowledgeReferences: LWWMapCRDT<string, KnowledgeReference>; // last-writer-wins for references
researchInsights: ResearchInsightCRDT; // custom CRDT for research insights
// Research Context
researchState: ResearchStateCRDT;
modelHistory: ModelHistoryCRDT;
// Conflict Resolution Metadata
researchIntegrityHash: string;
contextConsistencyValidation: boolean;
}
Research Insight CRDT
Research insights have unique properties that require specialized conflict resolution:
interface ResearchInsightCRDT {
type: 'research-insight';
insights: Map<string, InsightState>;
// Insight evolution tracking
evolutionGraph: InsightEvolutionGraph;
confidenceUpdates: ConfidenceCRDT;
validationHistory: ValidationCRDT;
}
interface InsightState {
id: string;
content: string;
confidence: number; // 0-1 confidence score
evidence: EvidenceSet;
// CRDT metadata
createdAt: Timestamp;
updatedAt: Timestamp;
authorId: string;
vectorClock: VectorClock;
// Research-specific metadata
researchRelevance: number;
validationStatus: 'unvalidated' | 'peer-reviewed' | 'evidence-supported' | 'contradicted';
supersededBy?: string; // reference to newer insight that replaces this
buildsupon?: string[]; // references to insights this builds upon
}
// Custom merge logic for research insights
function mergeInsights(local: InsightState, remote: InsightState): InsightState {
// Research-aware conflict resolution
if (local.evidence.strength > remote.evidence.strength) {
return {
...local,
// Incorporate non-conflicting elements from remote
confidence: Math.max(local.confidence, remote.confidence),
validationStatus: mergeValidationStatus(local.validationStatus, remote.validationStatus)
};
}
// Handle temporal evolution of insights
if (isEvolutionOf(remote, local)) {
return {
...remote,
buildsupon: [...(local.buildsupon || []), local.id]
};
}
// Create branched insight for genuine conflicts
return createBranchedInsight(local, remote);
}
Conversation Memory CRDT
Preserves conversation flow and context across model switches:
interface ConversationMemoryCRDT {
type: 'conversation-memory';
conversationId: string;
// Message sequence with research context
messages: RGASequenceCRDT<ResearchMessage>; // Replicated Growable Array for messages
memoryMarkers: GSetCRDT<MemoryMarker>; // Grow-only set of research insights
modelSwitches: ModelSwitchCRDT; // Track model changes with context preservation
// Research context preservation
contextSnapshots: ContextSnapshotCRDT;
knowledgeIntegration: KnowledgeIntegrationCRDT;
// Cross-conversation links for research projects
crossReferences: CrossReferenceCRDT;
}
interface ModelSwitchCRDT {
switches: GSetCRDT<ModelSwitchEvent>;
contextPreservation: LWWMapCRDT<string, ContextPreservationRecord>;
}
interface ModelSwitchEvent {
id: string;
timestamp: Timestamp;
fromModel: string;
toModel: string;
contextTransferIntegrity: number; // 0-1 score
memoryPreservation: 'full' | 'summary' | 'markers-only';
// CRDT metadata
vectorClock: VectorClock;
authorId: string;
}
Knowledge Base CRDT
Manages RAG documents and MCP integrations across researchers:
interface KnowledgeBaseCRDT {
type: 'knowledge-base';
projectId: string;
// Document management
documents: LWWMapCRDT<string, RAGDocument>;
documentChunks: LWWMapCRDT<string, DocumentChunk>;
embeddings: EmbeddingCRDT;
// MCP integrations
mcpConnections: GSetCRDT<MCPConnection>;
toolUsageLog: SequenceCRDT<ToolUsageEvent>;
// Research-specific knowledge tracking
knowledgeGraph: KnowledgeGraphCRDT;
citationNetwork: CitationNetworkCRDT;
// Access control and privacy
accessControl: AccessControlCRDT;
}
interface KnowledgeGraphCRDT {
nodes: GSetCRDT<ConceptNode>; // concepts don't get deleted, only evolved
edges: LWWMapCRDT<string, ConceptRelationship>; // relationships can be updated
conceptEvolution: ConceptEvolutionCRDT;
}
// Custom merge for knowledge updates
function mergeKnowledgeUpdates(local: RAGDocument, remote: RAGDocument): RAGDocument {
// Preserve research citations and usage tracking
const mergedCitations = mergeCitations(local.citations, remote.citations);
const mergedUsage = mergeUsageMetrics(local.usageMetrics, remote.usageMetrics);
// Content updates use timestamp-based resolution with research context awareness
if (remote.lastModified > local.lastModified &&
remote.researchRelevanceScore >= local.researchRelevanceScore) {
return {
...remote,
citations: mergedCitations,
usageMetrics: mergedUsage,
previousVersions: [...local.previousVersions, local.id]
};
}
return {
...local,
citations: mergedCitations,
usageMetrics: mergedUsage
};
}
Collaborative Research CRDTs
Multi-Researcher Project CRDT
Coordinates multiple researchers while preserving individual privacy:
interface CollaborativeProjectCRDT {
type: 'collaborative-research-project';
projectId: string;
// Individual researcher contributions (encrypted)
researcherContributions: Map<string, EncryptedResearcherCRDT>;
// Shared research components
sharedMethodology: LWWMapCRDT<string, MethodologyComponent>;
aggregatedInsights: AggregatedInsightsCRDT;
comparativeAnalyses: ComparativeAnalysesCRDT;
// Collaboration coordination
researcherPresence: PresenceCRDT; // who's actively researching
collaborationEvents: SequenceCRDT<CollaborationEvent>;
// Privacy-preserving aggregation
anonymizedMetrics: AnonymizedMetricsCRDT;
}
interface EncryptedResearcherCRDT {
researcherId: string;
encryptedData: EncryptedBlob; // contains individual ConversationMemoryCRDT
publicMetadata: {
lastActiveTimestamp: Timestamp;
contributionCount: number;
researchPhase: string;
};
// Contribution signatures for aggregation without decryption
contributionSignatures: GSetCRDT<ContributionSignature>;
}
Privacy-Preserving Aggregation CRDT
Enables collaborative insights while maintaining individual privacy:
interface AggregatedInsightsCRDT {
type: 'aggregated-research-insights';
// Anonymized insights that can't be traced to individuals
anonymizedInsights: GSetCRDT<AnonymizedInsight>;
consensusInsights: ConsensusInsightsCRDT;
// Statistical aggregations without individual data exposure
researchMetrics: StatisticalAggregationCRDT;
// Collaborative validation without revealing individual votes
privateVoting: PrivateVotingCRDT;
}
interface AnonymizedInsight {
id: string;
content: string;
aggregatedConfidence: number;
supportingEvidence: number; // count, not individual evidence
researchDomain: string;
// No individual attribution - cryptographically anonymized
contributorCount: number;
consensusLevel: 'emerging' | 'supported' | 'strong-consensus' | 'universal';
// CRDT metadata
vectorClock: VectorClock;
aggregationHash: string; // verifies proper anonymization
}
CRDT Conflict Resolution for Research
Research-Aware Conflict Resolution
interface ResearchConflictResolution {
// Priority-based resolution for research data types
resolutionPriorities: {
memoryContextIntegrity: 'critical', // never lose research memory
temporalConsistency: 'critical', // maintain chronological order
researchContinuity: 'high', // preserve research flow
collaborativeConsistency: 'high', // maintain team coordination
individualPrivacy: 'high', // protect individual research data
dataCompleteness: 'medium' // prefer complete over partial data
};
// Custom resolution strategies for research conflicts
conflictResolutionStrategies: {
memoryMarkerConflicts: 'preserve-all-create-synthesis',
insightEvolutionConflicts: 'temporal-ordering-with-branching',
knowledgeReferenceConflicts: 'evidence-strength-weighted',
collaborativeDataConflicts: 'privacy-preserving-merge',
modelPerformanceConflicts: 'statistical-aggregation'
};
}
// Example: Memory marker conflict resolution
function resolveMemoryMarkerConflicts(
local: MemoryMarker[],
remote: MemoryMarker[]
): MemoryMarker[] {
const merged: MemoryMarker[] = [];
// Add all non-conflicting markers
const localIds = new Set(local.map(m => m.id));
const remoteIds = new Set(remote.map(m => m.id));
// Preserve all unique insights
merged.push(...local.filter(m => !remoteIds.has(m.id)));
merged.push(...remote.filter(m => !localIds.has(m.id)));
// Handle conflicts with research-aware resolution
for (const localMarker of local) {
const remoteMarker = remote.find(r => r.id === localMarker.id);
if (remoteMarker) {
// Resolve conflict preserving research value
const resolvedMarker = resolveMarkerConflict(localMarker, remoteMarker);
merged.push(resolvedMarker);
}
}
// Maintain temporal ordering for research continuity
return merged.sort((a, b) => a.timestamp.compare(b.timestamp));
}
function resolveMarkerConflict(local: MemoryMarker, remote: MemoryMarker): MemoryMarker {
// Research-specific conflict resolution logic
if (local.evidence.strength > remote.evidence.strength) {
return {
...local,
// Incorporate additional evidence from remote
evidence: combineEvidence(local.evidence, remote.evidence),
confidence: Math.max(local.confidence, remote.confidence),
validationHistory: mergeValidationHistory(local.validationHistory, remote.validationHistory)
};
} else if (remote.evidence.strength > local.evidence.strength) {
return {
...remote,
evidence: combineEvidence(local.evidence, remote.evidence),
confidence: Math.max(local.confidence, remote.confidence),
validationHistory: mergeValidationHistory(local.validationHistory, remote.validationHistory)
};
} else {
// Equal evidence strength - create synthesis insight
return createSynthesisInsight(local, remote);
}
}
Performance Optimization for Research CRDTs
interface ResearchCRDTOptimization {
// Memory management for large research projects
memoryOptimization: {
contextCompression: 'semantic-preserving-compression',
historicalDataArchiving: 'research-importance-based',
cacheStrategy: 'research-workflow-aware',
garbageCollection: 'preserve-research-critical-data'
};
// Network optimization for research collaboration
networkOptimization: {
deltaCompression: 'research-context-aware',
prioritizedSync: 'memory-context-first',
batchOptimization: 'research-operation-grouping',
conflictReduction: 'predictive-conflict-avoidance'
};
// Storage optimization for long-term research
storageOptimization: {
indexingStrategy: 'research-semantic-indexing',
compressionAlgorithm: 'research-data-optimized',
accessPatterns: 'research-workflow-optimized',
archivalStrategy: 'research-value-preserving'
};
}
This CRDT implementation ensures that Polyglot can maintain research data consistency and integrity across distributed research environments while preserving the unique requirements of AI research workflows.
Last updated